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A B S T R A C T   

The reliability of a β-Ga2O3 thin-film field-effect transistor is investigated under positive-bias stress (PBS). The 
transistor has a tri-gate structure with a gate dielectric of Al2O3. By characterizing low-frequency noise (LFN), the 
spatial distribution of trap in the gate dielectric was quantitatively extracted. The measured power spectral 
density (PSD) followed a 1/f-shape due to trapping and de-trapping of the channel carriers to and from the gate 
dielectric. Notably, the vertical distribution of the traps perpendicular to the interface of β-Ga2O3 and Al2O3 was 
mapped   

1. Introduction 

Beta-gallium oxide (β-Ga2O3) is a promising candidate for next 
generation power devices due to its wide energy bandgap (EG) of 4.8 eV 
and high breakdown electric field (EBD) of 8 MV/cm compared with SiC 
and GaN materials [1–6]. Unlike the conventional Schottky gate struc
tures, i.e., GaN high-electron mobility transistors (HEMTs), the insta
bility of a gate dielectric on a β-Ga2O3 channel, which is related to traps 
in the gate dielectric, can be an obstacle to achieving high EBD and 
suppressing gate leakage current (IG). Extraction of the dielectric traps is 
thus important for long-term and reliable operations. Thus far, several 
meaningful investigations of the reliability issues in β-Ga2O3 FETs have 
been reported [7–10]. When the temperature of β-Ga2O3 FET was 
increased, off-state current (Ioff) and sub-threshold slope (SS) increased, 
and on-state current (Ion) decreased compared to before the room tem
perature (RT) by analyzing the transfer curve characterization [3]. 
However, a quantitative investigation of the spatial distribution of oxide 
and interface traps in the gate dielectric of the β-Ga2O3 FETs has not 
been reported yet. Meanwhile, an analysis of low-frequency noise (LFN) 
is a powerful characterization technique for studying the carrier trans
port properties and evaluating the quality of gate dielectrics [11–17]. 

Furthermore, the LFN analysis is applicable even to a MOSFET with a 
floating body, because it characterizes the drain current (IDS) rather than 
the body current (IB). Unlike the conventional charge pumping tech
nique to extract traps near the interface of the gate dielectric-to-channel 
via the IB, the LFN technique is advantageous to profile the spatial dis
tribution of traps (NT) inside the bulk of the gate dielectric [18,19]. This 
work quantitatively investigated the spatial distribution of NT in a 
β-Ga2O3 FET with a tri-gate structure and a gate dielectric of Al2O3. The 
nominal dimensions of the fabricated β-Ga2O3 FET are a channel width 
(WCH) of 50 nm, a gate length (LG) of 1 μm, and a channel height (HCH) of 
100 nm. The vertical distribution of the NT perpendicular to the inter
face of the β-Ga2O3-to-Al2O3 was profiled for various VG through the LFN 
and DC I-V. The cases before and after positive-bias stress (PBS) were 
then compared. Whereas the NT prior to the PBS was uniformly 
distributed, that after the PBS was spatially varied. 

2. Device fabrication and measurement 

For the fabrication of the tri-gate β-Ga2O3 FETs, a thin (100) β-Ga2O3 
nano-membrane doped by Sn with a doping concentration of 2.7 × 1018 

cm− 3 was transferred from the bulk β-Ga2O3 substrate onto a p+ Si wafer 
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with a 270 nm thick SiO2 layer. It was delineated by a 1st electron beam 
(e-beam) lithography step and patterned by subsequent dry-etching for a 
channel [20,21]. Afterwards, the source (S) and the drain (D) regions 
were defined by following three steps: 2nd e-beam lithography, metal 
deposition, and a lift-off process. For the S/D metals, Ti, Al, and Au, were 
sequentially deposited with respective thickness of 15 nm, 60 nm, and 
50 nm. Thereafter, Al2O3 was deposited by atomic layer deposition 
(ALD) for a gate dielectric. Lastly, Ni and Au with a thickness of 50 nm 
and 80 nm, respectively, were deposited by an e-beam evaporator and 
patterned by a 3rd e-beam lithography step and etching for a gate 
electrode, as shown in Fig. 1. Fig. 1(a) shows a schematic illustration of 
the tri-gate β-Ga2O3 FET. To demonstrate the narrow tri-gate channel 
clearly, a SEM image of the fabricated device before gate metal depo
sition is provided in Fig. 1(b). The LFN measurement obtained RTS noise 
through a low-noise current preamplifier (SR570) by applying DC bias to 
the gate and drain with a parameter analyzer (4155B). Next, 1/f noise 
was measured through the vector-signal analyzer (89410A) to convert 
RTS noise from the following time domain to the frequency domain. 

3. Low-frequency noise characterization 

Fig. 2 illustrates the depth profile of trap along the vertical direction 
in the Al2O3/β-Ga2O3 gate stack obtained by using LFN measurement. 
The LFN includes thermal noise, which is the random thermal motion of 
electrons. The power spectral density (PSD) of the thermal noise current 
is given as follows (1): 

SID =
4kT
R

(1)  

where T is temperature, k is Boltzmann’s constant, and R is the resis
tance [11]. The PSD follows a 1/f-shape, which is caused by the trapping 
and de-trapping of channel charges to and from the traps in the gate 
dielectric. Therefore, the vertically spatial distribution of traps can be 
quantitatively mapped and the depth profile before and after the bias 
stress can be compared. The carrier number fluctuation (CNF) correlated 
with carrier mobility fluctuation (CMF) is one of the mechanisms of the 
LFN. It is based on the interaction between traps in a gate dielectric and 
carriers in the channel [11]. The noise signal is mainly attributed to the 
trapping/de-trapping events caused by the tunneling of charge carriers 
into and from the traps, which are located near the interface of the gate 
dielectric and channel. The normalized PSD of drain current (SID/ID2) 
according to the CNF and CMF model is expressed as follow (2): 

SID

I2
D

=

(

1 + αscμeff Cox
ID

gm

)2(gm

ID

)2

SVFB, (2)  

where αsc is the Coulomb scattering coefficient, gm is the trans
conductance (defined as ∂ID/∂VG) [11]. SVFB is the flat-band voltage 
noise PSD is given as follows (3): 

SVFB =
q2kTλNT

WLC 2
OXf

(3)  

where NT is the trap density and λ is the tunneling attenuation length in 
the gate dielectric (0.1 nm for Al2O3) [11]. 

The gate voltage noise spectrum can calculate the physical distance 
dependence of the NT from the frequency f, which is expressed as follows 
(4): 

x = λ1n
(

1
2πf τ0

)

(4)  

where τ0 is the characteristic time constant, which is usually taken as 10- 

10 sec [11]. Note that τ is the tunneling time constant and is defined as 1/ 
2πf. τ is determined by the physical distance (x) of a trap perpendicular 
to the β-Ga2O3/Al2O3 interface. Because the PSD of referred-input gate 
voltage noise (SVG) is defined as SID/gm

2 , NT can be extracted from the 
frequency-dependent SVG. 

4. Experimental results 

Fig. 3(a) and (b) show the measured ID-VG and ID-VD characteristics 
from the fabricated β-Ga2O3 FET. The characteristics before and after the 
PBS were compared. The detailed PBS conditions are VG of 4.5 V, VD =

VS = ground and stress time of 1000 sec. Such PBS induces NT in the 
Al2O3 gate dielectric. It interacts with the channel carriers, provokes 
mobility degradation, and results in decreasing ION. On the other hand, 
NT causes additional parasitic capacitance, degrades the SS, and shifts 
the threshold voltage (VT). As a consequence, three representative de
vice parameters, ION, SS, and VT, were degraded by the PBS, as shown in 
Fig. 3. 

In order to quantitatively extract NT, LFN analyses were conducted. 
As shown in Fig. 4(a) and (b), the PSD was measured at the initial state 
and after PBS damage [22]. A normalized value of drain-current PSD 
follows a 1/f-shape in a frequency range of 10 Hz to 1610 Hz. The VT is 
extracted via linear extrapolation method and was negatively shifted 
from the initial data to 2.3 V and to 1.5 V after PBS. At VG = VT + 2 V, the 
level of the PSD with PBS is two orders higher than that without PBS. It is 
important to evaluate how well the measured data correlate with the 
noise model prior to the LFN characterization. The normalized PSD 
values multiplied by frequency and gm

2 /ID2 were overlaid as a function of 
ID before and after PBS at 10, 100, and 1000 Hz, as shown in Fig. 5 (a) 
and (b). In the weak inversion region, the normalized PSD values are 
well correlated with the gm

2 /ID2 values, verifying that the noises can be 
ascribed to the CNF. In the strong inversion region, the parasitic resis
tance effect (RSD) arising from the source and drain contacts becomes 
larger [23]. Therefore, the normalized PSD values at higher ID deviate 
from the gm

2 /ID2 values. NT values along with the vertical depth direction 
were extracted from the measured PSD values, as shown in Fig. 6. The 
level of NT after PBS is always above that before PBS (initial) regardless 

Fig. 1. (a) Cross-sectional schematic along the channel width direction. (b) SEM image of the fabricated device after RIE etching.  
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of the depth position (x). In particular, the amount of traps increases 
with a deeper x. This implies that injected carriers gain higher energy by 
PBS as x becomes farther from the interface. The extracted oxide trap 
and interface trap (Dit) [8] densities before and after PBS is summarized 
in Table 1. 

5. Conclusion 

The spatial trap distribution (NT) in an Al2O3 gate dielectric of a 
β-Ga2O3 FET with a 3-D tri-gate structure was characterized along the 
depth direction by analyzing the measured characteristics of low- 
frequency noise (LFN). It was confirmed that NT was increased by 
positive-bias stress (PBS) and became non-uniformly distributed. The 
incremental tendency of NT with a deeper position in the Al2O3 arises 

Fig. 2. Cross-sectional view of a gate stack and PSD for varied f and its corresponding x, which is the distance from the interface and is extracted from Equation (2) as 
a function of f. 

Fig. 3. Measured characteristics from the fabricated β-Ga2O3 FETs. (a) Comparison of IDS-VGS with and without PBS. (b) Compared IDS-VDS for with and without PBS.  

Fig. 4. Normalized drain-current PSD (SID/ID2) as a function of f: (a) Initial state and (b) after PBS.  
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from higher stress voltage applied to the gate. This work can pave the 
way to advance devices based on a β-Ga2O3 channel via characterizing 
NT to explore optimal gate dielectrics. 
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